1. Consider the relation \sim on \mathbb{Z} defined by $a \sim b \Leftrightarrow 3 \mid(a-b)$.
(a) Determine whether and why \sim is reflexive.
(b) Determine whether and why ~ is symmetric.
(c) Determine whether and why ~ is transitive.
2. Let $S=\{a, b, c, d, e\}$, and let $\sim=\{(a, a),(a, e),(b, b),(b, c),(c, b),(c, c),(d, d),(e, a),(e, e)\}$.
(a) Give the equivalence classes of \sim.
(b) Give the partition associated with ~.
3. Let S be a set and Π a partition of S. Let \sim be a relation on S defined by $a \sim b \Leftrightarrow \exists P \in \Pi$ for which $a, b \in P$.
(a) Show \sim is a reflexive relation.
(b) Show \sim is a symmetric relation.
(c) Show \sim is a transitive relation.
4. Biff is a student at Enormous State University who has inexplicably found himself in a transition-to-proof course. Biff says "So we had to say if these things were, like, refluxive and symmetry and transitive, right? And one of them was if $a \sim b \Leftrightarrow a+b \equiv_{5} 0$, and I said it was refluxive because $5 \sim 5$, right? But they gave me no credit at all and then made fun of my answer in class the next day as an example of how not to ever do anything. I think I'm gonna drop."

Explain clearly to Biff what's wrong with his deduction.
5. For two vertices v_{1} and v_{2} of a graph G we say $v_{1} \sim v_{2} \Leftrightarrow \exists$ a walk of even length from v_{1} to v_{2}.
(a) Determine whether and why ~ is reflexive.
(b) Determine whether and why ~ is symmetric.
(c) Determine whether and why ~ is transitive.

