Examlet 4 Foundations of Advanced Math 4/14/23

- 1. Consider the relation ~ on \mathbb{Z} defined by $a \sim b \Leftrightarrow 3|(a b)$.
 - (a) Determine whether and why \sim is reflexive.

(b) Determine whether and why \sim is symmetric.

(c) Determine whether and why \sim is transitive.

- 2. Let $S = \{a, b, c, d, e\}$, and let $\sim = \{(a, a), (a, e), (b, b), (b, c), (c, b), (c, c), (d, d), (e, a), (e, e)\}$.
 - (a) Give the equivalence classes of \sim .

(b) Give the partition associated with \sim .

- 3. Let *S* be a set and Π a partition of *S*. Let ~ be a relation on *S* defined by $a \sim b \Leftrightarrow \exists P \in \Pi$ for which $a, b \in P$.
 - (a) Show \sim is a reflexive relation.

(b) Show \sim is a symmetric relation.

(c) Show \sim is a transitive relation.

4. Biff is a student at Enormous State University who has inexplicably found himself in a transition-to-proof course. Biff says "So we had to say if these things were, like, refluxive and symmetry and transitive, right? And one of them was if $a \sim b \Leftrightarrow a + b \equiv_5 0$, and I said it was refluxive because $5 \sim 5$, right? But they gave me no credit at all and then made fun of my answer in class the next day as an example of how not to ever do anything. I think I'm gonna drop."

Explain clearly to Biff what's wrong with his deduction.

- 5. For two vertices v_1 and v_2 of a graph *G* we say $v_1 \sim v_2 \Leftrightarrow \exists$ a walk of even length from v_1 to v_2 .
 - (a) Determine whether and why \sim is reflexive.

(b) Determine whether and why \sim is symmetric.

(c) Determine whether and why \sim is transitive.