Four of these problems will be graded (our choice, not yours!), with each problem worth 5 points. Clear and complete justification is required for full credit. You are welcome to discuss these problems with anyone and everyone, but you must write up your own final submission without reference to any sources other than the textbook and instructor.

1. Express the definition of the quotient of two functions in terms of ordered pairs.
2. Express the definition of the composition of two functions in terms of ordered pairs.
3. Express the definition of an injective function in terms of ordered pairs.
4. The number of edges in a tree with n vertices is \qquad
5. Any graph where each vertex has degree at least 2 is connected.
6. Any graph where some vertex v_{0} is joined to each other vertex in the graph by a walk is connected.
7. The maximum possible number of arcs in a digraph with n vertices is \qquad
8. We say that two vertices v_{1} and v_{2} of a graph G are adjacent $\Leftrightarrow \exists$ an edge $\left\{v_{1}, v_{2}\right\}$ in G. Determine whether the relation of being adjacent in a graph is reflexive, symmetric, and transitive.
9. We say that two vertices v_{1} and v_{2} of a graph G are in the same component of G $\Leftrightarrow \exists$ a walk from v_{1} to v_{2} in G. Determine whether the relation of being in the same component of a graph is reflexive, symmetric, and transitive.
10. We say that two vertices v_{1} and v_{2} of a graph G are on a common cycle of $G \Leftrightarrow \exists$ a cycle including v_{1} and v_{2}. Determine whether the relation of being on a common cycle of a graph is reflexive, symmetric, and transitive.
