Each problem is worth 5 points. For full credit indicate clearly how you reached your answer.

1. Find an equation for the plane tangent to $f(x,y) = x^2y - y^2x + 7x$ at the point (-3,1).

$$f_{x}(x,y) = \lambda y x - y^{2} + 7 \qquad f_{x}(-3,1) = \lambda(1)(-3) - (1)^{2} + 7 = -6 - 1 + 7 = 0$$

$$f_{y}(x,y) = \chi^{2} - \lambda x y + 0 \qquad f_{y}(-3,1) = (-3)^{2} - 2(-3)(1) = 9 + 6 = 15$$

$$3 = (-3)^{2}(1) - (1)^{2}(-3) + 7(-3) = 9 + 3 - \lambda 1 = -9$$

$$3 - 3 = m(x - x_{0}) + n(y - y_{0})$$

$$3 + 9 = 0(x + 3) + 15(y - 1)$$

$$3 + 9 = 15y - 15$$

$$15y - 3 = 24$$

15

2. If $f(x,y) = \ln(x^2+y^2)$, find grad f(x,y).

$$f(x,y) = \ln(x^2 + y^2)$$
tate partial devivatives with respect to x and y
$$f_{x}(x,y) = \frac{1}{x^2 + y^2} \cdot 2x = \frac{2x}{x^2 + y^2}$$

$$f_{y}(x,y) = \frac{1}{x^2 + y^2} \cdot 2y = \frac{2y}{x^2 + y^2}$$

$$grad f(x,y) = \langle f_{x}(x,y), f_{y}(x,y) \rangle$$

$$grad f(x,y) = \langle \frac{2x}{x^2 + y^2}, \frac{2y}{x^2 + y^2} \rangle$$