Problem Set 6 Calculus 1 Due 7/27/05

You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each problem is worth 5 points. For full credit indicate clearly how you reached your answer. All work must be legible and submitted on clean paper without ragged edges.

1. Do \#14 in §5.1.
2. Compute $\mathrm{L}_{3}, \mathrm{R}_{3}, \mathrm{~L}_{6}$, and R_{6} for the definite integral $\int_{0}^{3}\left(9-x^{2}\right) d x$.
3. Evaluate $\int_{0}^{3}\left(9-x^{2}\right) d x$ exactly using the Definition of the Definite Integral.

Problem Set 6 Calculus 1 Due 7/27/05

You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each problem is worth 5 points. For full credit indicate clearly how you reached your answer. All work must be legible and submitted on clean paper without ragged edges.

1. Do \#14 in §5.1.
2. Compute $\mathrm{L}_{3}, \mathrm{R}_{3}, \mathrm{~L}_{6}$, and R_{6} for the definite integral $\int_{0}^{3}\left(9-x^{2}\right) d x$.
3. Evaluate $\int_{0}^{3}\left(9-x^{2}\right) d x$ exactly using the Definition of the Definite Integral.

Problem Set 6 Calculus 1 Due 7/27/05

You are encouraged to work in groups of two to four on this assignment and make a single group submission. Each problem is worth 5 points. For full credit indicate clearly how you reached your answer. All work must be legible and submitted on clean paper without ragged edges.

1. Do \#14 in §5.1.
2. Compute $\mathrm{L}_{3}, \mathrm{R}_{3}, \mathrm{~L}_{6}$, and R_{6} for the definite integral $\int_{0}^{3}\left(9-x^{2}\right) d x$.
3. Evaluate $\int_{0}^{3}\left(9-x^{2}\right) d x$ exactly using the Definition of the Definite Integral.
