You are encouraged to work in groups of two to four on this assignment and make a single group submission. Problems 1 through 5 are each worth 2 points, and problem 6 is worth 5 points. For full credit indicate clearly how you reached your answer. All work must be legible and submitted on clean paper without ragged edges.

1. Find $\int\left(6 e^{2 x}+5 x\right) d x$.
2. Find $\int z\left(1+\frac{1}{z}-\frac{1}{z^{2}}\right) d z$.
3. Evaluate $\int_{0}^{\pi / 6}(\sin 3 t+3) d t$.
4. Evaluate $\int_{0}^{3} x \sqrt{9-x^{2}} d x$
5. If $\mathrm{F}(x)=\int_{0}^{x} \sqrt{4+t^{2}} d t$, find $\mathrm{F}^{\prime}(x)$.
6. Find the area of the region bounded between the graphs of $y=3 x$ and $y=4-x^{2}$.

You are encouraged to work in groups of two to four on this assignment and make a single group submission. Problems 1 through 5 are each worth 2 points, and problem 6 is worth 5 points. For full credit indicate clearly how you reached your answer. All work must be legible and submitted on clean paper without ragged edges.

1. Find $\int\left(6 e^{2 x}+5 x\right) d x$.
2. Find $\int z\left(1+\frac{1}{z}-\frac{1}{z^{2}}\right) d z$.
3. Evaluate $\int_{0}^{\pi / 6}(\sin 3 t+3) d t$.
4. Evaluate $\int_{0}^{3} x \sqrt{9-x^{2}} d x$
5. If $\mathrm{F}(x)=\int_{0}^{x} \sqrt{4+t^{2}} d t$, find $\mathrm{F}^{\prime}(x)$.
6. Find the area of the region bounded between the graphs of $y=3 x$ and $y=4-x^{2}$.

You are encouraged to work in groups of two to four on this assignment and make a single group submission. Problems 1 through 5 are each worth 2 points, and problem 6 is worth 5 points. For full credit indicate clearly how you reached your answer. All work must be legible and submitted on clean paper without ragged edges.

1. Find $\int\left(6 e^{2 x}+5 x\right) d x$.
2. Find $\int z\left(1+\frac{1}{z}-\frac{1}{z^{2}}\right) d z$.
3. Evaluate $\int_{0}^{\pi / 6}(\sin 3 t+3) d t$.
4. Evaluate $\int_{0}^{3} x \sqrt{9-x^{2}} d x$
5. If $\mathrm{F}(x)=\int_{0}^{x} \sqrt{4+t^{2}} d t$, find $\mathrm{F}^{\prime}(x)$.
6. Find the area of the region bounded between the graphs of $y=3 x$ and $y=4-x^{2}$.

You are encouraged to work in groups of two to four on this assignment and make a single group submission. Problems 1 through 5 are each worth 2 points, and problem 6 is worth 5 points. For full credit indicate clearly how you reached your answer. All work must be legible and submitted on clean paper without ragged edges.

1. Find $\int\left(6 e^{2 x}+5 x\right) d x$.
2. Find $\int z\left(1+\frac{1}{z}-\frac{1}{z^{2}}\right) d z$.
3. Evaluate $\int_{0}^{\pi / 6}(\sin 3 t+3) d t$.
4. Evaluate $\int_{0}^{3} x \sqrt{9-x^{2}} d x$
5. If $\mathrm{F}(x)=\int_{0}^{x} \sqrt{4+t^{2}} d t$, find $\mathrm{F}^{\prime}(x)$.
6. Find the area of the region bounded between the graphs of $y=3 x$ and $y=4-x^{2}$.

You are encouraged to work in groups of two to four on this assignment and make a single group submission. Problems 1 through 5 are each worth 2 points, and problem 6 is worth 5 points. For full credit indicate clearly how you reached your answer. All work must be legible and submitted on clean paper without ragged edges.

1. Find $\int\left(6 e^{2 x}+5 x\right) d x$.
2. Find $\int z\left(1+\frac{1}{z}-\frac{1}{z^{2}}\right) d z$.
3. Evaluate $\int_{0}^{\pi / 6}(\sin 3 t+3) d t$.
4. Evaluate $\int_{0}^{3} x \sqrt{9-x^{2}} d x$
5. If $\mathrm{F}(x)=\int_{0}^{x} \sqrt{4+t^{2}} d t$, find $\mathrm{F}^{\prime}(x)$.
6. Find the area of the region bounded between the graphs of $y=3 x$ and $y=4-x^{2}$.

You are encouraged to work in groups of two to four on this assignment and make a single group submission. Problems 1 through 5 are each worth 2 points, and problem 6 is worth 5 points. For full credit indicate clearly how you reached your answer. All work must be legible and submitted on clean paper without ragged edges.

1. Find $\int\left(6 e^{2 x}+5 x\right) d x$.
2. Find $\int z\left(1+\frac{1}{z}-\frac{1}{z^{2}}\right) d z$.
3. Evaluate $\int_{0}^{\pi / 6}(\sin 3 t+3) d t$.
4. Evaluate $\int_{0}^{3} x \sqrt{9-x^{2}} d x$
5. If $\mathrm{F}(x)=\int_{0}^{x} \sqrt{4+t^{2}} d t$, find $\mathrm{F}^{\prime}(x)$.
6. Find the area of the region bounded between the graphs of $y=3 x$ and $y=4-x^{2}$.
