1. The gamma function is defined as \(\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt \).

a) Find \(\Gamma(1), \Gamma(2), \Gamma(3), \Gamma(4), \) and \(\Gamma(5) \). Is there a pattern?

b) Show that \(\Gamma(x + 1) = x \Gamma(x) \) for all \(x > 0 \). [Hint: Integration by Parts is your friend.]

2. a) Use Mathematica or other technology to find an exact value for \(\Gamma(\frac{1}{2}) \).

b) Explain how, once you have the value from part a for \(\Gamma(\frac{1}{2}) \), you can find \(\Gamma(\frac{3}{2}) \) and \(\Gamma(-\frac{1}{2}) \) without needing a computer or calculator again.