The Geometric Series Test: If a series is of the form \(\sum_{n=1}^{\infty} a \cdot r^{n-1} \), then the series converges to \(\frac{a}{1 - r} \) if and only if \(|r| < 1 \).

The Integral Test: Suppose \(f(x) \) is a continuous, positive, decreasing function on \([c, \infty)\) for some \(c \geq 0\), with \(a_n = f(n) \) for all \(n \),
- If \(\int_{c}^{\infty} f(x) \, dx \) converges, then \(\sum a_n \) converges also.
- If \(\int_{c}^{\infty} f(x) \, dx \) diverges, then \(\sum a_n \) diverges also.

The Comparison Test: If \(\sum a_n \) and \(\sum b_n \) are both series with their terms all positive, and
- \(a_n \leq b_n \) with \(\sum b_n \) convergent, then \(\sum a_n \) converges also.
- \(a_n \geq b_n \) with \(\sum b_n \) divergent, then \(\sum a_n \) diverges also.

The Limit Comparison Test: If \(\sum a_n \) and \(\sum b_n \) are both series with their terms all positive, and

\[
\lim_{n \to \infty} \frac{a_n}{b_n} = L
\]

for some finite, positive number \(L \), then either both series converge or both series diverge.

The Alternating Series Test: If \(\sum a_n \) is a series for which
- the signs alternate, i.e. \(a_n \) and \(a_{n+1} \) have opposite signs for all \(n \)
- the sequence \(\{ |a_n| \} \) tends to zero, i.e. \(\lim_{n \to \infty} |a_n| = 0 \)
- the sequence \(\{ |a_n| \} \) is decreasing, i.e. \(|a_{n+1}| \leq |a_n| \) for all \(n \)

then the series converges.

The Ratio Test: If \(\sum a_n \) is a series for which

\[
\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L
\]

then
- if \(L < 1 \) then the series converges absolutely.
- if \(L > 1 \) (or if the limit diverges to \(+\infty \)) then the series diverges.