There are many possible ways to choose L_1 and L_2, one of which is the following.

Theorem: There is a path L_2 of path connected open subsets of S', whose union is S', and for which p: S' --+ F, maps each path component of p(', S') isomorphic.

Lemma: If there is a path L_1 of path connected open subsets of S', whose union is S', and for which p: S' --+ F, maps each path component of p(', S') isomorphic.

The primary properties of the covering projection p: S' --+ F, are needed to produce a lifting of a homotopy f: I --+ F, and a homotopy g: I --+ S' to a covering homotopy F: S' --+ I x I.

We shall be particularly interested in lifting a path of the real line R to the real line R.

For which paths f: X --+ S', is called a covering function of f: X --+ S', a continuous function f: X --+ S', a space and f: X --+ S', a covering projection of f: X --+ S', will be instrumental in the study of the additive group Z of integers. The function p: S' --+ F, defined by p(x) = (cos(2πx), sin(2πx)), exhibits this section shows that the fundamental group of a circle is isomorphic to Z.

The Fundamental Group of S'

(a) Prove that each weakly contractible space is simply connected.

(b) Give an example of a weakly contractible space that is not contractible.

(c) In the case that a weak contraction is not required to leave the base point x fixed.

Thus the difference between a contraction on X and a weak contraction on X is

The function G is called a weak contraction.
Then U_1 and U_2 are clearly path connected open subsets of S^1 whose union equals S^1. From the definition of the covering projection p, it follows easily that

$$p^{-1}(U_1) = \bigcup_{k=-\infty}^{\infty} (k - 1/2, k + 1/4),$$

$$p^{-1}(U_2) = \bigcup_{k=-\infty}^{\infty} (k, k + 3/4).$$

Note that the path components of $p^{-1}(U_j)$ are the intervals $(k - 1/2, k + 1/4)$, k an integer, each of which is mapped by p homeomorphically onto U_j. Similarly, p maps the path components $(k, k + 3/4)$ of $p^{-1}(U_2)$ homeomorphically onto U_2. This completes the proof of the lemma.

Theorem 9.6: The Covering Path Property If $\alpha: I \to S^1$ is a path with initial point I, then there is a lifting of α to a unique covering path $\tilde{\alpha}: I \to \mathbb{R}$ with initial point 0.

Proof: The proof rests on the following intuitive idea. Subdivide the range of the path α into connected sections so that each section is contained either in U_1 or U_2, the sets prescribed in the proof of the lemma. If a certain section is contained in U_1, we choose one of the intervals $A = (k - 1/2, k + 1/4)$ and consider the restriction $p|_A$ of p to this interval. Since this restriction is a homeomorphism, we can compose the inverse of $p|_A$ with the given section of α to "lift" this section to a section of a path in \mathbb{R}. Sections lying in U_2 are lifted similarly. Being careful to have the terminal point of one lifted section agree with the initial point of the next lifted section will insure a continuous lifting of the entire path.
\[\begin{align*}
\text{Let } B = I - I \text{ with } I = \{ \lambda \in \mathbb{R}^+ \mid \lambda \geq 0 \}, \\
\text{and } \gamma \text{ be a triangle in } I \text{ with } \gamma \cap B = \emptyset.
\end{align*} \]

\[\phi : [\gamma] \rightarrow [\gamma]. \]

\[[\gamma] \times [\gamma] \rightarrow [\gamma]. \]

\[\phi : [\gamma] \rightarrow [\gamma]. \]

\[\text{Proof:} \]

\[\text{The Covariant Homotopy Property.} \]

\[\text{Theorem 9.7:} \]
where
\[0 = t_0 < t_1 < \cdots < t_n = 1, \quad 0 = s_0 < s_1 < \cdots < s_m = 1\]
so that \(H \) maps any of the prescribed rectangles into either \(U_1 \) or \(U_2 \). Since \(H(0, 0) = 1 \) is not in \(U_2 \), then \(H \) must map the first rectangle \([t_0, t_1] \times [s_0, s_1]\) into \(U_1 \). Letting \(A_j = (-1/2, 1/4) \) as before, define \(\tilde{H} \) on \([t_0, t_1] \times [s_0, s_1]\) by
\[
\tilde{H}(t, s) = (p \mid A_j)^{-1} H(t, s).
\]

The definition of \(\tilde{H} \) is extended over the rectangles \([t_k, t_{k+1}] \times [s_0, s_1]\) as in the proof of the Covering Path Property, being sure that the definitions agree on the edges between rectangles. This defines \(\tilde{H} \) on the strip \([0, 1] \times [s_0, s_1]\). Next, \(H \) is defined in an analogous way on the strip \([0, 1] \times [s_1, s_2]\), with the definitions agreeing on the edges between rectangles. This argument extends inductively in a straightforward way to complete the proof.

Definition: For a loop \(\alpha \) in \(S^1 \) with base point 1, the Covering Path Property specifies a unique covering path \(\tilde{\alpha} \) of \(\alpha \) with \(\tilde{\alpha}(0) \) equal to 0. Since
\[(\cos 2\pi \tilde{\alpha}(1), \sin 2\pi \tilde{\alpha}(1)) = p\tilde{\alpha}(1) = \alpha(1) = 1\]
it follows that \(\tilde{\alpha}(1) \) must be an integer. This integer is called the **degree** of the loop \(\alpha \) and is denoted \(\text{deg}(\alpha) \).

Intuitively, one thinks of the degree of a loop \(\alpha \) as the net number of times that \(\alpha \) “wraps” the interval \([0, 1]\) around \(S^1 \). Counterclockwise wrappings are counted as positive and clockwise ones as negative. The next theorem shows that the degree of a loop completely determines its equivalence class in \(\pi_1(S^1, 1) \).

Theorem 9.8: For loops \(\alpha, \beta \) in \(S^1 \) with base point 1, \([\alpha] = [\beta]\) if and only if \(\text{deg}(\alpha) = \text{deg}(\beta) \).

Proof: Suppose first that \([\alpha] = [\beta]\) so that \(\alpha \) and \(\beta \) are equivalent loops in \(S^1 \). Let \(F : I \times I \rightarrow S^1 \) be a homotopy demonstrating the equivalence of \(\alpha \) and \(\beta \):
\[
F(\ast, 0) = \alpha, \quad F(\ast, 1) = \beta, \quad F(0, s) = F(1, s) = 1, \quad s \in I.
\]
The Covering Homotopy Property insures the existence of a unique covering homotopy \(\tilde{F} \) of \(F \) such that \(\tilde{F}(0, 0) = 0 \). For \(s \) in \(I \),
\[
p\tilde{F}(0, s) = F(0, s) = 1,
\]
and thus has degree p^n. Thus $d = 1$. Let $\gamma = (1)^n$. Thus $d = 1$.

has a covering path if the function

$I \in 1 \subseteq \cdots \subseteq [0, 1]$,

is a covering path of the function

$d: (I, S) \sqcup [0, 1] \ni \gamma \mapsto \delta \gamma = ((1)^n)$

degree of a loop equivalence class $[\gamma]$ where γ assigns the integer

Theorem 9.8 shows that d is well-defined and one-to-one. To see that it is surjective,

Proof: Consider the degree function $d: (I, S) \sqcup [0, 1] \ni \gamma \mapsto \delta \gamma = ((1)^n)$

of integers.

The fundamental group $\pi_1(S, 1)$ is isomorphic to the additive group \mathbb{Z}.

Theorem 9.9: The fundamental group $\pi_1(S, 1)$ is isomorphic to the additive group \mathbb{Z}.

Theorem 9.8 shows how to associate each homotopy class of loops in S with an integer by the homotopy degree. The homotopy degree $d: \pi_1(S, 1) \to \mathbb{Z}$ is defined by $d(\gamma) = 1 \times 1 \in I \ni \gamma(0) \mapsto \gamma(s)$ for some s in I.

\[d(\gamma) = \begin{cases} 1 & \text{if } \gamma \text{ is not nullhomotopic} \\ 0 & \text{if } \gamma \text{ is nullhomotopic} \end{cases} \]

Thus the equivalence classes $[\gamma]$ and $[\delta \gamma]$ are equivalent if and only if $d(\gamma) = d(\delta \gamma)$. The nullhomotopy of γ is equivalent to the nullhomotopy of $\delta \gamma$ if and only if $d(\gamma) = d(\delta \gamma)$. Therefore, the number of covering paths that pass through a given point x is the same as the number of covering paths that pass through y. Since $F(x) = 0$, then $F(0) = 0$. For all s in I, the same occurs for each value of s. Since $F(0) = 0$, then $F(s) = 0$ for all s in I. Therefore, the same number of covering paths must be an integer. Since $F(x)$ is connected, the same number of covering paths must be an integer.
It remains to be proved that d is a homomorphism. For $[\sigma], [\tau] \in \pi_1(S^1, 1)$, let $\tilde{\sigma}$ and $\tilde{\tau}$ denote the unique covering paths of σ and τ beginning at 0. Then the path $g: I \to \mathbb{R}$ defined by

$$
g(t) = \begin{cases}
\tilde{\sigma}(2t) & 0 \leq t \leq 1/2 \\
\tilde{\sigma}(1) + \tilde{\tau}(2t - 1) & 1/2 \leq t \leq 1
\end{cases}
$$

is the covering path of $\sigma \ast \tau$ with initial point 0. Thus

$$
deg(\sigma \ast \tau) = g(1) = \tilde{\sigma}(1) + \tilde{\tau}(1) = deg(\sigma) + deg(\tau).
$$

Hence

$$
d([\sigma] \ast [\tau]) = d([\sigma \ast \tau]) = deg(\sigma \ast \tau)
= deg(\sigma) + deg(\tau) = d([\sigma]) + d([\tau]).
$$

Thus d is an isomorphism from $\pi_1(S^1, 1)$ onto \mathbb{Z}.

The covering projection $p: \mathbb{R} \to S^1$ has been instrumental in our computation of $\pi_1(S^1)$. The relevant properties of this map have been generalized to define an important class of such functions $p: E \to B$ from a covering space E to a base space B for which analogues of the Covering Path Property and Covering Homotopy Property can be established. The fundamental group is used to determine which spaces are covering spaces for a given space B. More complete information about covering spaces can be found in the Suggestions for Further Reading at the end of the chapter.

EXERCISE 9.3

1. Explain in detail why the loop $\mu_k: I \to S^1$ defined by

$$
\mu_k(t) = p(kt), \quad t \in I,
$$

has degree k, for each integer k.

2. Complete the inductive definition of the covering homotopy in the proof of the Covering Homotopy Property (Theorem 9.7).

3. Consider S^1 as the set $z = x + iy$ of complex numbers having modulus 1. Then the covering projection $p: \mathbb{R} \to S^1$ is, by definition of the exponential function for complex variables,

$$
p(t) = \cos 2\pi t + i \sin 2\pi t = e^{2\pi i t}, \quad t \in \mathbb{R}.
$$